Computing rational points in convex semi-algebraic sets and SOS decompositions
نویسندگان
چکیده
Let P = {h1, . . . , hs} ⊂ Z[Y1, . . . , Yk], D ≥ deg(hi) for 1 ≤ i ≤ s, σ bounding the bit length of the coefficients of the hi’s, and Φ be a quantifier-free P-formula defining a convex semi-algebraic set. We design an algorithm returning a rational point in S if and only if S ∩ Q 6= ∅. It requires σD ) bit operations. If a rational point is outputted its coordinates have bit length dominated by σD 3). Using this result, we obtain a procedure deciding if a polynomial f ∈ Z[X1, . . . , Xn] is a sum of squares of polynomials in Q[X1, . . . , Xn]. Denote by d the degree of f , τ the maximum bit length of the coefficients in f , D = ( n+d n ) and k ≤ D(D + 1) − ( n+2d n ) . This procedure requires τD ) bit operations and the coefficients of the outputted polynomials have bit length dominated by τD 3). Key-words: rational sum of squares, semidefinite programming, convex semialgebraic sets, complexity. ∗ UPMC, Paris 6, LIP6 † KLMM, Academy of Mathematics and System Sciences, China in ria -0 04 19 98 3, v er si on 1 15 O ct 2 00 9 Calcul de points rationnels dans des semi-algébriques convexes et décomposition en sommes de carrés Résumé : Soit P = {h1, . . . , hs} ⊂ Z[Y1, . . . , Yk], D ≥ deg(hi) pour 1 ≤ i ≤ s, σ une borne sur la longueur binaire des coefficients des hi, et Φ une Pformule sans quantificateurs définissant un ensemble semi-algébrique convexe. Nous décrivons un algorithme qui retourne un point à coordonnées rationnelles dans S si et seulement si S ∩ Q 6= ∅. Cet algorithme est de complexité binaire σD 3). Si un point rationnel est renvoyé, ses coordonnées sont de longueur binaires dominées par σD 3). On déduit de ce résultat une procédure qui décide si un polynôme f ∈ Z[X1, . . . , Xn] est une somme de carrés de polynômes dans Q[X1, . . . , Xn]. Soit d le degré de f , τ le maximum des longueurs binaires des coefficients de f , D = ( n+d n ) et k ≤ D(D+1)− ( n+2d n ) . Cette procédure est de complexité binaire τD ) et les coefficients des polynômes obtenus en sortie ont une longueur binaire dominée par τD 3). Mots-clés : sommes de carrés à coefficients rationnels, programmation semidéfinie positive, ensembles semi-algebraiques convexes, complexité. in ria -0 04 19 98 3, v er si on 1 15 O ct 2 00 9 Rational points in convex semi-algebraic sets 3
منابع مشابه
On Exact Polya and Putinar's Representations
We consider the problem of finding exact sums of squares (SOS) decompositions for certain classes of non-negative multivariate polynomials, relying on semidefinite programming (SDP) solvers. We start by providing a hybrid numeric-symbolic algorithm computing exact rational SOS decompositions for polynomials lying in the interior of the SOS cone. It computes an approximate SOS decomposition for ...
متن کاملAlgebraic boundaries of convex semi-algebraic sets
We study the algebraic boundary of a convex semi-algebraic set via duality in convex and algebraic geometry. We generalise the correspondence of facets of a polytope with the vertices of the dual polytope to general semi-algebraic convex sets. In this case, exceptional families of extreme points might exist and we characterise them semi-algebraically. We also give a strategy for computing a com...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملAlgebraic Algorithms
This is a preliminary version of a Chapter on Algebraic Algorithms in the upcoming Computing Handbook Set Computer Science (Volume I), CRCPress/Taylor and Francis Group. Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, exponential and differential polynomials, rational functions, algebraic sets, curves and surfaces. In this vast area, manipulation wit...
متن کاملEssential Convexity and Complexity of Semi-Algebraic Constraints
Let Γ be a structure with a finite relational signature and a first-order definition in (R; ∗,+) with parameters from R, that is, a relational structure over the real numbers where all relations are semi-algebraic sets. In this article, we study the computational complexity of constraint satisfaction problem (CSP) for Γ: the problem to decide whether a given primitive positive sentence is true ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0910.2973 شماره
صفحات -
تاریخ انتشار 2009